Abstract

<p>In the past decade, several efforts have been made to project armed conflict risk into the future. However all of these approaches neglected the impact of hydrological extremes, specifically drought, on potential conflicts. This study broadens current approaches by presenting a first-of-its-kind application of machine learning (ML) methods to project sub-national armed conflict risk over the African continent along three Shared Socioeconomic Pathway (SSP) scenarios and three Representative Concentration Pathways towards 2050 including hydrological feedbacks.</p><p>We specifically assessed the role of hydro-climatic indicators as drivers of armed conflict. Overall, their importance is limited compared to main conflict predictors but results suggest that changing climatic conditions may both increase and decrease conflict risk, depending on the location: in Northern Africa and large parts of Eastern Africa climate change increases projected conflict risk whereas for areas in the West and northern part of the Sahel shifting climatic conditions may reduce conflict risk.</p><p>With our study being at the forefront of ML applications for conflict risk projections, we identify various challenges for this arising scientific field. A major concern is the limited selection of relevant quantified indicators for the SSPs at present. Specifically, the links between drought and conflicts are mostly region specific and not necessarily well reflected in the available data. Nevertheless, ML models such as the one presented here are a viable and scalable way forward in the field of armed conflict risk projections, and can help to inform the policy-making process with respect to climate security under changing hydroclimatic conditions.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.