Abstract

Antioxidants comprise a group of molecular systems that removes oxidizing agents potentially damaging biological and chemical environments. Since the oxidizing agents give rise to chemical reactions that can produce free radicals, which in turn lead the way to chain reactions that may damage cells, the removal of such oxidizing agents is inevitable in the living systems. Electronic structure calculations based on quantum chemistry provides a relatively good prediction of the molecular structure of biological antioxidants and it can be utilized to calculate molecular parameters, such as electron affinity, ionization potential, electronegativity, chemical potential, hardness, electrophilicity, and Fukui indices. From these a theoretical prediction is possible about the performance of an antioxidant. In this analysis one of the natural antioxidants leucocyanidin (C15H14O7) is selected and its performance is theoretically evaluated using different model chemistries. The chemical computations assert that leucocyanidin has an intrinsic nature of donating electrons and hence it can be regarded as a natural antioxidant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.