Abstract

The electrochemical CO2 reduction reaction (CO2RR) triggered by renewable electricity provides a promising route to produce chemical feedstocks and fuels with low-carbon footprints. The intrinsic challenge for the current CO2RR electrolyzer is the carbonate issue arising from the reaction between hydroxide and CO2. Acid CO2RR electrolyzers, in principle, can effectively solve the carbonate formation, but it remains inevitable practically. In this work, we thoroughly investigated the electrode processes of the CO2RR on the benchmark Ag catalyst in mild acid. The root of the carbonate issue arises from the imbalanced supply-consumption rate of protons-the electron transfer vs. mass transport. Regulating the hydrodynamics substantially reduces the proton diffusion length by 80%, increasing the single-pass carbon utilization efficiency of CO2-to-CO to 44% at -100 mA cm-2. The fundamental difference between mass transport and electron transfer on the spatial and temporal scale still leads to unavoidable carbonate formation. Future work to design intrinsically active catalysts in strong acid or metal-cation-free media is critical to solving the carbonate issue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.