Abstract

Filamentous cyanobacteria, Jacksonvillea sp. ISTCYN1 was isolated from agriculture field and cultured in BG-11 medium. This study, report the genome sequence of cyanobacteria Jacksonvillea thatto the best of our knowledgeis the firstgenome sequenceof thisgenus. The 5.7 MB draft genome sequence of this cyanobacterium contains 5134 protein-coding genes. The phylogenetic tree was constructed based on genome and Desertifilum sp. IPPAS B-1220 validated the closest relationship with Jacksonvillea sp. ISTCYN1. The growth of strain ISTCYN1 has been reported in the presence of different types of plastic when used as a sole carbon source. SEM analysis revealed biofilm formation by cyanobacterial strain ISTCYN1 on the surface of high and low-density polyethylene and polypropylene. In the presence of these plastics, EPS production has also been reported by this strain. Whole genome sequence analysis reveals the presence of many genes involved in biofilm formation. The presence of key enzymes responsible for plastic degradation laccase, esterase, lipase, thioesterase, and peroxidase have been predicted in the genome analysis. Genome analysis also provides insight into the genes involved in biotin biosynthetic pathways. Furthermore, the presence of many selenoproteins reveals the selenium acquisition by this cyanobacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.