Abstract

Ultrastable CsPbBr3 nanoplates against electron beam irradiations are fabricated and nanodomains with anomalous high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) contrasts are observed within CsPbBr3 nanoplates. Atomic resolution energy dispersive X-ray spectroscopy (EDS) mapping, which requires even higher beam currents and may cause significant damages on electron beam sensitive materials, are obtained without any detectable damages or decomposition. Combining HAADF-STEM images, atomic resolution EDS mapping, and image simulations has revealed detailed structure and chemistry of the nanodomains to be induced by Ruddlesden-Popper faults (RP faults) rather than any chemical intermixing or formation of new phases. A formation mechanism is also proposed on the basis of the atomic structure of the nanodomains. This result promotes an atomic-level understanding of inorganic lead halide perovskites and may help to reveal their structure-property relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.