Abstract

An important new tool for investigating how the Golgi receives cargo and maintains its integrity in the face of ongoing secretory traffic has emerged with the advent of green fluorescent protein (GFP) chimeras. GFP chimeras, which can be visualized in the unperturbed environment of a living cell, are being used in a wide variety of applications to study Golgi dynamics. These include time-lapse imaging, double-label and photobleach experiments. These studies are helping to clarify the steps involved in the formation, translocation and fate of transport intermediates associated with the Golgi complex, including the roles of cytoskeletal elements. They are also providing insights into mechanisms of protein retention and localization within Golgi membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call