Abstract

Raman spectroscopy is a powerful and nondestructive probe that demonstrates its efficiency in revealing the physical properties of low‐dimensional sp2 carbon systems. It gives access to the number of layers, the quality and the nature of defects of all carbon allotropes, but also to the understanding of the influence of perturbations such as strain and/or doping. In this paper, we review the state of the art regarding the effect of external perturbations on the optical phonons of graphene. We describe how doping can tune the unusual electron–phonon coupling in graphene and thus modify not only the resonance conditions but also the phonon intensities thanks to quantum interferences. We also review the impact of strain on optical phonons and how one can disentangle strain and doping thanks to optical phonons. Last, implementations of this field to strain engineering or to graphene‐based mechanical resonators will be presented. Copyright © 2018 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.