Abstract

Elucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals. Interestingly, the crossover of a non-classical crystallization pathway to a classical crystallization pathway can be induced by merely changing the NMDEA concentration. The key is the stability of a green rust-like intermediate complex that modulates the nucleation rate and growth of magnetite nanocrystals. The crossover separates two crystallization domains (classical and non-classical) and three basic configurations (mesocrystals, large and small colloidal nanocrystals). The above finding facilitated the synthesis of magnetic materials with different configurations to suit various engineering applications. Consequently, the effect of the single and multicore configurations of magnetic iron oxide on the biomedical (magnetic hyperthermia and enzyme immobilization) and catalytic activity (Fenton-like reactions and photo-Fenton-like processes driven by visible light irradiation) has been experimentally demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call