Abstract

High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.