Abstract

The health benefits of astaxanthin (AST) are related to its geometric isomers. Generally, functional activity is realized by the interactions between active substances and transporters. Hereto, bovine serum albumin (BSA), as a model-binding protein and transporter, is able to recognize and transport isomers of active substances through binding with them. However, differences in the binding mechanism of isomers to BSA may affect the functional activities of isomers through the “binding-transport-activity” chain reaction. Thus, this study sought to elucidate the interactions between AST geometrical isomers and BSA using multi-spectroscopy, surface plasmon resonance and molecular docking. The results showed that Z-AST displayed more interacting amino acid residues and lower thermodynamic parameters than all-E-AST. Meanwhile, the order of binding affinity to BSA was 13Z-AST (1.56 × 10−7 M) > 9Z-AST (2.70 × 10−7 M) > all-E-AST (4.01 × 10−7 M), indicating that Z-AST possessed stronger binding ability to BSA. Moreover, AST isomers were located at the junction between subdomains ⅡA and ⅢA of BSA, and showed the same interaction forces (hydrogen bond and van der Waals force) as well as kinetic processes (slow combination, slow dissociation). These interaction parameters provide valuable insights into their pharmacokinetics in vivo, and it was of great significance to explain the potential differences among AST isomers in functional activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call