Abstract

For materials near the phase boundary between weak and strong topological insulators (TIs), their band topology depends on the band alignment, with the inverted (normal) band corresponding to the strong (weak) TI phase. Here, taking the anisotropic transition-metal pentatelluride ZrTe_{5} as an example, we show that the band inversion manifests itself as a second extremum (band gap) in the layer stacking direction, which can be probed experimentally via magnetoinfrared spectroscopy. Specifically, we find that the band anisotropy of ZrTe_{5} features a slow dispersion in the layer stacking direction, along with an additional set of optical transitions from a band gap next to the Brillouin zone center. Our work identifies ZrTe_{5} as a strong TI at liquid helium temperature and provides a new perspective in determining band inversion in layered topological materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.