Abstract
We report the measurement of the binding constants (Ka) for cucurbit[n]uril (n = 7, 8) toward four series of guests based on 2,6-disubstituted adamantanes, 4,9-disubstituted diamantanes, 1,6-disubstituted diamantanes, and 1-substituted adamantane ammonium ions by direct and competitive 1H NMR spectroscopy. Compared to the affinity of CB[7]·Diam(NMe3)2, the adamantane diammonium ion complexes (e.g., CB[7]·2,6-Ad(NH3)2 and CB[7]·2,6-Ad(NMe3)2) are less effective at realizing the potential 1000-fold enhancement in affinity due to ion-dipole interactions at the second ureidyl C═O portal. Comparative crystallographic investigation of CB[7]·Diam(NMe3)2, CB[7]·DiamNMe3, and CB[7]·1-AdNMe3 revealed that the preferred geometry positions the +NMe3 groups ≈0.32 Å above the C═O portal; the observed 0.80 Å spacing observed for CB[7]·Diam(NMe3)2 reflects the simultaneous geometrical constraints of CH2···O═C close contacts at both portals. Remarkably, the CB[8]·IsoDiam(NHMe2)2 complex displays femtomolar binding affinity, placing it firmly alongside the CB[7]·Diam(NMe3)2 complex. Primary or quaternary ammonium ion looping strategies lead to larger increases in binding affinity for CB[8] than for CB[7], which we attribute to the larger size of the carbonyl portals of CB[8]; this suggests routes to develop CB[8] as the tightest binding host in the CB[n] family. We report that alkyl group fluorination (e.g., CB[7]·1-AdNH2Et versus CB[7]·1-AdNH2CH2CF3) does not result in the expected increase in Ka value. Finally, we discuss the role of solvation in nonempirical quantum mechanical computational methodology, which is used to estimate the relative changes in Gibbs binding free energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.