Abstract

A synergic approach combining molecular dynamics (MD) and X-ray absorption spectroscopy (XAS) has been used to investigate the structural properties of the La(Tf2N)3 salt (where Tf2N = bistriflimide or bis(trifluoromethansulfonyl)imide) dissolved into several mixtures of acetonitrile and the 1,8-bis(3-methylimidazolium-1-yl)octane bistriflimide (C8(mim)2(Tf2N)2) ionic liquid (IL), with the IL molar fraction (χIL) ranging from 0 to 1. The XAS and MD results show that major changes take place in the La3+ first solvation shell when moving from pure acetonitrile to pure C8(mim)2(Tf2N)2. With increasing the IL concentration of the mixture, the La3+ first shell complex progressively loses acetonitrile molecules to accommodate more and more oxygen atoms of the Tf2N- anions. Except in pure C8(mim)2(Tf2N)2, La3+ is always able to coordinate both acetonitrile and Tf2N- anions, with a ratio between the two different ligands strongly dependent on the IL content. Moreover, the La3+ ion prefers to form a 10-coordinated first shell complex in all the investigated systems, with a slightly different geometry of the cluster depending on the composition of the La3+ first solvation shell. In particular, when moving from pure acetonitrile to pure C8(mim)2(Tf2N)2, the La3+ first solvation shell passes from a bicapped square antiprism geometry where all the Tf2N- anions act only as monodentate ligands, to a "1 + 5 + 4" structure in which the Tf2N- anion binds La3+ both in a monodentate and bidentate fashion. The great adaptability shown by the La3+ solvation structure allows it to reach the optimal balance among many different forces at play involving all of the different species present in the mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.