Abstract

This work lays out the flow of electron density taking place along four reaction pathways of 32CA reaction of acetonitrile oxide between 7-bromo-oxanorborn-5-en-2-one which has been examined in detail and in accordance with the bonding evolution theory (BET). The BET study makes apparent the non-concerted bond breaking/forming processes along each reaction pathway. The number (seven) of stability structural domains (SSD) found along the different reaction pathway through the syn and anti-approach is identical. For the both reaction pathway, the N–C triple and C–C double bonds are the main electron flux and responsible for the appearance of the fold-type catastrophe on N and C atoms. Finally, the C–C sigma bond formation corresponding to cusp catastrophe starts first and follows by the O–C one along the four different reaction pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.