Abstract
This work aim to investigate the effect of sintering temperature (950–1250 °C) on structural, physical, tribological properties of nanobiomaterial Co28Cr6Mo alloy for total hip prosthesis obtained by high Energy ball milled. Several techniques such as density, porosity, microhardness, and Young’s modulus were used to assess the mechanical and physical characteristics. Tribological behavior were conducted using a ball-on-plate type Oscillating tribometer, under different applied loads (2, 10 and 20 N), under a wet condition using hank’s solution to simulate human body fluid. SEM, EDS and XRD analysis results, showed that Co-Cr-Mo alloy samples sintered exhibit the same phases created by the Co element. The alloy sintered at 1250 °C displayed the highest micro-hardness value in terms of mechanical characteristics (386.75 HV0.1. The porosity changes from 17% to 10% and endorse a higher change in Young’s modulus around 61.84 and 92.5 GPa for samples sintered beteewn 950 and 1250 °C, respectively,. A remarkable decrease in the wear rate and volume values is obtained for the sample sintered at 1250 °C (32.1610–3 μm3 (N.m)− 1) compared to other samples sintered at 1150 and 1250 °C. Under wet tribological conditions, the abrasive and adhesive wear mechanisms were identified as the main degradation mechanisms for all sintered samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.