Abstract

Molybdenum disulfide (MoS2) is a highly promising catalyst for the hydrogen evolution reaction (HER) to realize large-scale artificial photosynthesis. The metallic 1T′-MoS2 phase, which is stabilized via the adsorption or intercalation of small molecules or cations such as Li, shows exceptionally high HER activity, comparable to that of noble metals, but the effect of cation adsorption on HER performance has not yet been resolved. Here we investigate in detail the effect of Li adsorption and intercalation on the proton reduction properties of MoS2. By combining spectroscopy methods (infrared of adsorbed NO, 7Li solid-state nuclear magnetic resonance, and X-ray photoemission and absorption) with catalytic activity measurements and theoretical modeling, we infer that the enhanced HER performance of LixMoS2 is predominantly due to the catalytic promotion of edge sites by Li.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.