Abstract

Tubular, pie- and bread-shaped forms of Co3O4 with exposed {110}, {112} and {111} facets were prepared and compared in their photothermal catalytic performance and reaction pathways during the oxidation of methanol. Among them, the Co3O4 with exposed {110} facet exhibited the best photothermal catalytic performance (95% methanol conversion, 93% CO2 yield) under solar irradiation, while also maintaining good stability and moisture resistance. Reaction mechanism studies showed that the {110} facets had a strong adsorption capacity for formaldehyde, which facilitated its conversion to formate. The transformation of formaldehyde to formate species was the key step. The key step on the {110} facet was conversion of formaldehyde to a mono-dentate formate species, while conversion on the {112} and {111} facets was mainly to bi-dentate formate species. This study demonstrated that the design of preferential exposed crystal facet can regulate the pathway of photothermal catalytic reaction and realize efficient solar energy utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call