Abstract

Iron pyrite (FeS2) is a promising lithium-ion battery cathode material because of its low cost and ultrahigh energy density (1671 Wh kg-1). However, its reaction mechanisms are still controversial. In this work, we find that different from the conventional belief that an intermediate phase Li2FeS2 is formed followed by Fe/Li2S composites at the initial discharge, it undergoes a one-step reaction (FeS2 → Fe + Li2S) or a two-step reaction (FeS2 → FeS + Li2S → Fe + Li2S), which depends on the current rate and temperature. In the charge process, it undergoes a two-step reaction: phase transition Fe + Li2S → FeS at about 1.74 V and generation of elemental sulfur (Li2S → S, 2.30 V). FeS is a mackinawite phase that is formed on the interface of Li2S via heteroepitaxial growth. Subsequent cycles involves a combination reaction of FeS and S. The reaction mechanism suggests that FeS2 suffers from the demerits of both FeS and S, such as a large volume change, voltage hysteresis, and polysulfide dissolution. These findings would help us to understand the intrinsic capacity fading of FeS2 and provide guidelines to improve its electrochemical performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.