Abstract
ABSTRACTCost-effective microbial conversion processes of renewable feedstock into biofuels and biochemicals are of utmost importance for the establishment of a robust bioeconomy. Conventional baker's yeast Saccharomyces cerevisiae, widely employed in biotechnology for decades, lacks many of the desired traits for such bioprocesses like utilization of complex carbon sources or low tolerance towards challenging conditions. Many non-conventional yeasts (NCY) present these capabilities, and they are therefore forecasted to play key roles in future biotechnological production processes. For successful implementation of NCY in biotechnology, several challenges including generation of alternative carbon sources, development of tailored NCY and optimization of the fermentation conditions are crucial for maximizing bioproduct yields and titers. Addressing these challenges requires a multidisciplinary approach that is facilitated through the ‘YEAST4BIO’ COST action. YEAST4BIO fosters integrative investigations aimed at filling knowledge gaps and excelling research and innovation, which can improve biotechnological conversion processes from renewable resources to mitigate climate change and boost transition towards a circular bioeconomy. In this perspective, the main challenges and research efforts within YEAST4BIO are discussed, highlighting the importance of collaboration and knowledge exchange for progression in this research field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.