Abstract
A detailed study of the photocatalytic activity of hydrogen trititanate nanotubes (H-TNT), formed by a hydrothermal treatment, was carried out. H-TNT show a limited activity toward pyridinium chloride degradation under UV-light and even no activity under visible light. In contrast, H-TNT show activity toward the degradation of rhodamine 6G (R6G), both under UV and visible light. EPR spectroscopy is used to gain insight into this difference. UV-light excitation of H-TNT leads to the predominant formation of Ti3+ centers by trapping of electrons at Ti sites, whereas almost no reactive oxygen-based species are formed. Upon visible light excitation of these nanotubes, no light-induced EPR signals are observed. The activity toward R6G degradation thus stems from the excitation of R6G (under both UV and visible light) and the subsequent transfer of electrons into the conduction band of TiO2. After a short calcination process at 623 K, the H-TNT undergo a partial phase transformation into anatase, without affect...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.