Abstract

Ternary Pb-free Cs-Cu-I perovskites have attracted widespread attention because of their excellent optical properties and environmentally friendly advantages. Herein, two different Pb-free ternary Cs3Cu2I5 nanocrystals (NCs) and CsCu2I3 microrods (MRs) were synthesized via a heating method. The phase and morphology transition from blue emission of Cs3Cu2I5 NCs to yellow emission of CsCu2I3 MRs could be tuned effectively by manipulating the reaction temperature, decreasing the maximum photoluminescence quantum yields (PLQYs) from 82.7% to ∼10%. More interestingly, the Cs3Cu2I5 NCs could self-assemble into stacking chains, which exhibited a strong dependence on the polarity of solvents. In addition, it was demonstrated that the rapid phase transition and luminescence tuning between Cs3Cu2I5 and CsCu2I3 films took only a few seconds by direct heating or exposure to the polar solvent. This work may deepen the understanding of the phase transition process in Cu-based perovskites and provide a fluorescence material with a short switching time for anticounterfeiting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.