Abstract

The relationship between structure and ion transport in liquid electrolyte solutions is not well understood over the whole concentration and temperature ranges. In this work, we have studied the ionic conductivity (κ) as a function of molar fraction (x) and Temperature (T) for aqueous solutions of salts with nitrate anion and different cations (proton, lithium, calcium, and ammonium) along with their liquid-solid phase diagrams. The connection between the known features in the phase diagrams and the ionic conductivity isotherms is established with an insight on the conductivity mechanism. Also, known isothermal (κ vs.. x) and iso-compositional (κ vs.. T) equations along with a proposed two variables semi-empirical model (κ = f (x, T)) were fitted to the collected data to validate their accuracy. The role of activation energy and free volume in controlling ionic conductivity is discussed. This work brings us closer to the development of a phenomenological model to describe the structure and transport in liquid electrolyte solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.