Abstract

The insulin receptor (IR) is expressed widely throughout the brain (1); however, unlike insulin in peripheral tissues whose major function is regulation of glucose metabolism, the actions of insulin in the brain are less glucocentric. Glucose enters neurons and glia of the brain primarily through the facilitative glucose transporters GLUT1 and GLUT3 (2), which are not insulin dependent. Despite being dispensable for glucose entry into the brain, early work by Woods et al. (3) and others (reviewed in ref. 1) demonstrated that intracerebroventricular (ICV) delivery of insulin into the brain could produce a multitude of effects, including suppression of feeding behavior and hepatic glucose production, activation of thermogenesis in brown adipose tissue, and stimulation of lipogenesis in white adipose tissue, all without significantly altering systemic insulin levels. Using a conditional knockout of the IR in the brain, Bruning and colleagues (4,5) demonstrated that the actions of insulin in the brain require IRs and can produce a range of phenotypes including mild obesity, decreased counterregulatory responsiveness to hypoglycemia, and hypothalamic hypogonadism. This has been confirmed and refined by region-specific IR knockouts and knockdowns of the IR using antisense technology (6,7). Studies using animal models and in vitro systems have uncovered many other …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.