Abstract
The interplay between Mn ions and corrole ligands gives rise to complex scenarios regarding the metal centers' electronic properties expressing a range of high oxidation states and spin configurations. The resulting potential of Mn-corroles for applications such as catalysts or fuel cells has recently been demonstrated. However, despite being crucial for their functionality, the electronic structure of Mn-corroles is often hardly accessible with traditional techniques and thus is still under debate, especially under interfacial conditions. Here, we unravel the electronic ground state of the prototypical Mn-5,10,15-tris(pentafluorophenyl)corrole complex through X-ray spectroscopic investigations of ultrapure thin films and quantum chemical analysis. The theory-based interpretation of Mn photoemission and absorption fine structure spectra (3s and 2p and L2,3-edge, respectively) evidence a Mn(III) oxidation state with an S = 2 high-spin configuration. By referencing density functional theory calculations with the experiments, we lay the basis for extending our approach to the characterization of complex interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.