Abstract

Cancer stem cells (CSCs) often switch on their self-renewal programming aggressively to cause a relapse of cancer. Intriguingly, glucose triggers the proliferation propensities in CSCs by controlling the expression of the key transcription factor-like Nanog. However, the factors that critically govern this glucose-stimulated proliferation dynamics of CSCs remain elusive. Herein, by proposing a mathematical model of glucose-mediated Nanog regulation, we showed that the differential proliferation behavior of CSCs and cell-type similar to CSCs can be explained by considering the experimentally observed varied expression levels of key positive (STAT3) and negative (p53) regulators of Nanog. Our model reconciles various experimental observations and predicts ways to fine-tune the proliferation dynamics of these cell types in a context-dependent manner. In future, these modeling insights will be useful in developing improved therapeutic strategies to get rid of harmful CSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.