Abstract

Commercial SSZ-13 zeolite with different n(Si)/n(Al) ratios and from different suppliers were subjected to a post-synthetic treatment in order to create mesopores of up to 10 nm. Furthermore, the materials were modified with copper ions and thoroughly physico-chemically characterized. The modified textural properties varied the nature of copper species, and thus, activity in the selective catalytic reduction of NOx with ammonia (NH3-SCR-DeNOx). Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) studies with hexane as probe liquid revealed improved intracrystalline diffusion for some Cu-containing SSZ-13 materials. The NH3-SCR-DeNOx pathway is verified viain situ DR UV-Vis, in situ FT-IR and EPR, temperature-programmed studies as well as SSITKA studies that provide a mechanistic understanding of the reaction. Kinetic modelling results demonstrate the highest NH3-SCR-DeNOx reaction rates and up to 20 % lower energy barriers with n(Si)/n(Al) ratio of 6.5 for all modified forms (i.e., (NH4)Cu-SSZ-13_6.5 and Cu-SSZ-13_6.5_NaOH/0.1) and cause only negligible parasitic ammonia oxidation. The modelling of the stop-flow experiments further demonstrates that the SCR pathway via the HONO surface intermediate is present but barely contributes to the overall NO conversion compared to the dominant path between adsorbed NH3 and NO from the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.