Abstract
Heavy metal (HM) toxicity of agricultural soils poses a major risk to plant health, human life, and global food chain. Crop output and health are negatively impacted when HM levels in agricultural soils reach hazardous points. The nano-biochar (nano-BC) mediated stress tolerance has attracted growing scientific interest because biochar has the potential to be a novel and sustainable solution that may be actively included into the development of sustainable agriculture and food production. At present, biochar is extensively employed as a powerful tool to enhance sustainable agriculture with minimal impact on ecosystems and the environment. Nano-BC offers improved surface area, adsorption and mobility properties in soil compared to traditional fertilizers. Furthermore, nano-BC may prove to be the most practical substitute for traditional waste management techniques because of its affordability, sustainability, and environmental friendliness. In this review, we examine the application of nano-BC in the regulation of HM stress tolerance for improving plant growth and development. We focus on the impact of HMs impact on crop productivity, nano-BC amendments, their application, and production. The article also explores the nano-BC risk and toxicity. Through the perspective of multidisciplinary research, this work highlights the significance of nano-BC as cutting-edge tools in the field of agriculture, igniting a paradigm shift toward sustainable and stress-resilient farming systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.