Abstract

Herein, we present the results of a computational study that employed various simulation methodologies to build and validate a series of molecular models of a synthetic triple-helical peptide (fTHP-5) both in its native state and in a prereactive complex with the catalytic domain of the MMP-2 enzyme. First, the structure and dynamical properties of the fTHP-5 substrate are investigated by means of molecular dynamics (MD) simulations. Then, the propensity of each of the three peptide chains in fTHP-5 to be distorted around the scissile peptide bond is assessed by carrying out potential of mean force calculations. Subsequently, the distorted geometries of fTHP-5 are docked within the MMP-2 active site following a semirigid protocol, and the most stable docked structures are fully relaxed and characterized by extensive MD simulations in explicit solvent. Following a similar approach, we also investigate a hypothetical ternary complex formed between two MMP-2 catalytic units and a single fTHP-5 molecule. Overall, our models for the MMP-2/fTHP-5 complexes unveil the extent to which the triple helix is distorted to allow the accommodation of an individual peptide chain within the MMP active site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call