Abstract

Mineralogy, fabric, and frictional properties are fundamental aspects of natural and experimental faults that concur in controlling the fault strength and the fault slip behavior. Mineralogy controls the fabric evolution influencing the micro-mechanisms at play during fault deformation and needs an in-depth investigation to better understand and foresee the frictional response of experimental faults. Classically, this investigation has been conducted by relating the fault frictional behavior to the post-experimental microstructures. However, this “classical” approach provides a direct but static view of the fault deformation where the evolution of fabric with deformation can be only speculated. To investigate in “real-time” the deformation micro-mechanisms at play during the experiments, the recording and analyses of Acoustic Emissions (AEs) produced by the deforming fault gouge can provide new insights. In this study, we present a systematic study of microstructural, mineralogical, frictional, and AEs analysis coming from a suite of frictional experiments in a double direct shear configuration (biaxial apparatus, BRAVA2). We conducted experiments on gouges made of bi-disperse and layered mixtures of quartz and phyllosilicate. These experiments were performed at a constant normal stress of 52MPa and under 100% humidity. The friction evolves with the phyllosilicate content from µ ~ 0.6 for 100% quartz to µ ~ 0.4 for 100% phyllosilicates. At the end of the experiments samples were carefully collected and prepared for microstructural analysis. The fabric of the experimental samples show an evolution from localized to distributed and foliated fabric with increasing amount of phyllosilicate content. We then integrate specific features of AEs, such as amplitude and AE rate, to unveil the micro-mechanisms at play during the experimental fault deformation. Our results show that the overall AE behavior is controlled by mineralogy. Deformation of quartz gouge produces the largest number of AEs whereas phyllosilicates are almost not producing AEs. Furthermore, the AE behavior of bi-disperse mixtures of quartz and phyllosilicates is strongly controlled by the amount of phyllosilicates. In fact, increasing the amount of phyllosilicate, the number, the rate, and the amplitude of AEs decrease. This behavior could be explained by the lubricant role of phyllosilicates which hinder the interaction between quartz grains favoring foliation sliding as main deformation mechanism and thus reducing the frictional strength. These results suggest that for bi-disperse mixtures the AEs reflect the frictional behavior of the mixture. Layered quartz-phyllosilicates mixtures show instead a non-trivial acoustic emission behavior which cannot be directly related to the measured frictional strength of the layered mixture: friction is controlled by the frictionally weaker mineral phase, whereas the AEs are probably dependent by the interplay between the stronger and weaker phase of the layered mixture. Our results show that fault fabric together with mineralogy strongly control the micro-mechanisms at play during deformation and therefore the frictional response. Our findings support the use of the AE analysis as a new tool for the investigation of the micro-mechanisms at play during deformation, improving our interpretation of the mechanical behavior of fault gouges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.