Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are increasingly investigated for applications such as optoelectronic memories, artificial neurons, sensors, and others that require storing photogenerated signals for an extended period. In this work, we report an environment- and gate voltage-dependent photocurrent modulation method of TMD monolayer-based devices (WS2 and MoS2). To achieve this, we introduce structural defects using mild argon–oxygen plasma treatment. The treatment leads to an extraordinary over 150-fold enhancement of the photocurrent in vacuum along with an increase in the relaxation time. A significant environmental and electrostatic dependence of the photocurrent signal is observed. We claim that the effect is a combined result of atomic vacancy introduction and oxide formation, strengthened by optimal wavelength choice for the modified surface. We believe that this work contributes to paving the way for tunable 2D TMD optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.