Abstract

The deformation behavior of short-chain branched, amorphous polyethylene (PE) was investigated using united atom molecular dynamics (MD) simulations under uniaxial stretching. Our research reported in this paper examined the internal mechanisms underlying the mechanical response of the PE by analyzing potential energies, dihedral angle distributions, chain orientation and entanglements. The findings indicated that the short-chain branching generally enhanced Young’s modulus, except for sample B60 with a critical ethyl branch content of 60/1000 (60 ethyl branches per 1000 backbone carbons). The Young’s modulus of B60 was the local minimum value in the various samples. Analysis of the evolution of dihedral angles shows that the short-chain branching hinders the transition from gauche to trans configurations, leading to a decrease in the trans population as the branch content increases. Regarding the sample B60 with critical branch content 60/1000, the orientation parameter and entanglement parameter of the molecular chains along the backbone were lowest in the initial structure, and the efficiency of chain disentanglement was at its lowest during deformation. The simulation results elucidated the deformation mechanism related to the conformational evolution of the molecular chains, which can provide atomic-scale insights into the mechanical properties and processability of branched polyethylene, thereby allowing for optimization in its design and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.