Abstract

Cometabolism has shown great potential in increasing the engineering feasibility of microalgae-based biotechnologies for the aerobic treatment of antibiotics-polluted wastewaters. Yet, the underlying mechanisms involved in improved microalgal performance remain unknown. In this study, we incorporated transcriptomics, gene network analysis, and enzymatic activities with cometabolic pathways of tetracycline (TC) by Chlorella pyrenoidosa to identify the key driving factors. The results demonstrated that cometabolism constructed a metabolic enzymes-photosynthetic machinery to improve the electron transport chain and activities of catalytic enzymes, which resulted in subsequent 100% removal of TC. Coupling formation dynamics of the intermediates with roles of identified metabolic enzymes, degradation of TC can be induced by de/hydroxylation, de/hydrogenation, bond-cleavage, decarboxylation, and deamination. Evaluation of 18 antibiotics’ removal in reclaimed water showed cometabolism decreased the total concentrations of these antibiotics from 495.54 ng L−1 to 221.80 ng L−1. Our findings not only highlight the application potential of cometabolism in increasing engineering feasibility of microalgal degradation of antibiotics from wastewaters, but also provide the unique insights into unraveling the “black-box” of cometabolisms in aerobic biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.