Abstract

Nannopus (Harpacticoida, Nannopodidae) species are abundant and widely distributed throughout the world across a variety of habitats. Nannopus is well known for high frequencies of misidentifications and thus may comprise several cryptic complexes and morphologically distinct species. Cryptic taxa are common in meiofauna communities. In this study, we aimed to identify Nannopus species using an integrative approach including molecular taxonomy. We adopted a non-destructive DNA extraction method so that morphological and molecular data could be obtained from the same specimen. We analyzed the molecular diversity and distributions of Nannopus using a total of 190 individuals. We sequenced the 190 mtCOI, 53 mtCYTB, 25 18SrDNA, and 43 28SrDNA genes from 190 individuals. Several species delimitation approaches were applied, including uncorrected p-distances for mtCOI, mtCYTB, 18SrDNA, and 28SrDNA, and Automatic Barcode Gap Discovery and Bayesian implemented Poisson tree processes for mtCOI and mtCYTB data. The maximum likelihood and Bayesian approaches were used to examine the phylogenetic relationships among individuals using the combined set of all four genes. Our species delimitation and phylogenetic analyses indicated the presence of three cryptic and six morphologically distinct species. All species are sympatric and widely distributed across mudflats ranging from the Yellow Sea to the South Sea in Korea. The divergence patterns of the four genes were not congruent. A phylogenetic tree based on the concatenated dataset was the most robust, was congruent with morphology, and suggested two major clades. We considered the validity of reinstating the genus Ilyophilus (Lilljeborg, 1902) and ultimately concluded that including all congeners in Nannopus until the type species (N. palustris Brady, 1880) is re-described was the most prudent approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.