Abstract

Evidence suggests the association of bisphenol A (BPA) with increased collagen (COL) expression in the development of fibrosis. Ultraviolet and fluorescence spectra on collagen-BPA interaction showed that 100 ng/ml of BPA initiated loosening of protein backbone through unfolding with exposure of tyrosine residues resulting in an intermediate “Molten Globule” state, which later aggregated with 1 μg/ml of BPA indicated with an apparent red-shift. Conformational changes with CD and ATR-FTIR showed disappearance of negative band with broadening and shifting of peptide carbonyl groups. Light scattering findings with TEM images presented initial dissolution followed by unordered thick fibrillar bundles with 30 μg/ml BPA. The complex was pH sensitive, with calorimetric thermogram revealing increased thermal stability requiring 83°C to denature. Hydrogen bonds of 2.8 Å with hydrophobic interactions of BPA in all grooves of collagen molecule with same pattern and binding energy (−4.1 to −3.9 kcal/mol) confirmed the intensity of aggregate formation via in-silico docking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.