Abstract

In recent years, there has been a growing interest in identifying subcellular causes of male infertility, and sperm DNA fragmentation (SDF) research has been at the forefront of this focus. DNA damage can occur during spermatogenesis due to faulty chromatin compaction or excessive abortive apoptosis. It can also happen as sperm transit through the genital tract, often induced by oxidative stress. There are several methods for SDF testing, with the sperm chromatin structure assay, terminal deoxynucleotidyl transferase d-UTI nick end labeling (TUNEL) assay, comet assay, and sperm chromatin dispersion test being the most commonly used. Numerous studies strongly support the negative impact of SDF on male fertility potential. DNA damage has been linked to various morphological and functional sperm abnormalities, ultimately affecting natural conception and assisted reproductive technology outcomes. This evidence-based review aims to explore how SDF influences male reproduction and provide insights into available therapeutic options to minimize its detrimental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call