Abstract

The hydroxypropionaldehyde (HPA) system is a natural defense system synthesized by the probiotic bacterium Lactobacillus reuteri. To elucidate which of the molecules composing the HPA system (3-hydroxypropionaldehyde (3-HPA), reuterin (HPA dimer), and HPA hydrate) is responsible for the potent antimicrobial activity in biological systems, a combination of biochemical, genetic, and proteomic assays was used. The HPA system reacts with sulfhydryl-containing compounds such as cysteine and reduced glutathione (GSH) in solution. In situ, GSH knock-out Escherichia coli is significantly more susceptible to HPA-mediated cell death than E. coli wild type; GSH supplementation protects either bacteria from HPA attack. Proteomic analysis of HPA-treated bacteria ( Haemophilus influenzae ) revealed induction of redox- and heat shock-related proteins. A new antimicrobial mechanism of HPA is proposed, whereby the activity of HPA leads to depletion of free SH- groups in GSH and proteins through the action of 3-hydroxypropionaldehyde, causing an imbalance of the cellular redox status, ultimately resulting in cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.