Abstract

In order to achieve a comprehensive understanding of protein aggregation processes, an exploration of solvation dynamics, a key yet intricate component of biological phenomena, is mandatory. In the present study, we used Fourier transform infrared spectroscopy and terahertz spectroscopy complemented by atomic force microscopy and kinetic experiments utilizing thioflavin T fluorescence to elucidate the changes in solvation dynamics during liquid-liquid phase separation and subsequent amyloid fibril formation, the latter representing a transition from liquid to solid phase separation. These processes are pivotal in the pathology of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. We focus on the ACC1–13K24-ATP protein complex, which undergoes fibril formation followed by droplet generation. Our investigation reveals the importance of hydration as a driving force in these processes, offering new insights into the molecular mechanisms at play.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.