Abstract

AbstractAmorphization of the support in single‐atom catalysts is a less researched concept for promoting catalytic kinetics through modulating the metal–support interaction (MSI). We modeled single‐atom ruthenium (RuSAs) supported on amorphous cobalt/nickel (oxy)hydroxide (Ru‐a‐CoNi) to explore the favorable MSI between RuSAs and the amorphous skeleton for the alkaline hydrogen evolution reaction (HER). Differing from the usual crystal counterpart (Ru‐c‐CoNi), the electrons on RuSAs are facilitated to exchange among local configurations (Ru‐O‐Co/Ni) of Ru‐a‐CoNi since the flexibly amorphous configuration induces the possible d–d electron transfer and medium‐to‐long range p–π orbital coupling, further intensifying the MSI. This embodies Ru‐a‐CoNi with enhanced water dissociation, alleviated oxophilicity, and rapid hydrogen migration, which results in superior durability and HER activity of Ru‐a‐CoNi, wherein only 15 mV can deliver 10 mA cm−2, significantly lower than the 58 mV required by Ru‐c‐CoNi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call