Abstract

A combined modelling study on the Fischer-Tropsch Mechanism on Ru(0001). The DFT results presented herein approve the idea that the carbide mechanism is not the main reaction path in the synthesis of liquid hydrocarbons on Ru{0001}. The direct reaction of a CH(x)(s) species with a CO(s) species is kinetically and thermochemically preferred over CO dissociation and the hydrogenation of carbon monoxide can be seen as the initiation reaction of the hydrocarbon polymerisation process. Moreover, this study shows that CO dissociation is favoured over desorption on Ru{0001}, while on the analogue Co facet desorption is clearly favoured. This study therefore is an important further confirmation on new thinking in the Fischer-Tropsch synthesis. The fundamental insight gained in these studies will be of paramount importance for engineers optimising the FT process. Optimisation will not only lower the cost of FT fuels but simultaneously lower energy consumption and emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.