Abstract

Perovskites have attracted tremendous attention as potential catalysts for the oxygen evolution reaction (OER). It is well-known that the introduction of Fe into rare earth perovskites such as LaNiO3 enhances the intrinsic OER activity. Despite numerous studies on structure-property relationships, the origin of the activity and the nature of the active species are still elusive and unclear. In this work, we study a series of LaNixFe1-xO3 perovskites using in situ electrochemical surface-enhanced Raman spectroscopy and electron energy loss spectroscopy to decipher the surface evolution and formation of active species during OER. While the origin of the activity arises from NiOOH species formed from the active Ni centers in LaNiO3, our work shows that Fe serves as the active center in LaNi0.5Fe0.5O3 and forms Fe-O-Ni and FeOOH species during OER. The OER activity of LaFeO3 originates from FeOOH species, which interact with the soluble Ni species in the electrolyte forming an active electrode-electrolyte interface with high-valent stable surface iron species (Fe4+) and thereby improving the performance. Our work provides deeper insights into the synergistic effects of Ni and Fe on the catalytic activity, which in turn provides new design principles for perovskite catalysts for the OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.