Abstract

Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1 π-π* ) and high energy 3 n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0 , which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with -OMe (Me=Methyl) or -F substitution at 2 or 2' positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC ). For unsubstituted thioxanthone and for isopropyl substitution at 2' position, the S1 -T1 gap is slightly positive ( ), rendering a lower triplet harvesting efficiency. For systems with -OMe or -F substitution at 3 or 3' position of thioxanthone, because of buried π state and high energy π* state, the S1 -3 nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.