Abstract

Floodplain lakes are good metacommunity systems to study the environmental and spatial processes structuring local assemblages. They are more connected during high-water periods and are more isolated during low-water periods. We evaluated the effects of lake spatial patterning and water and sediment conditions on Unionida species assemblages. Moran Eigenvector Maps were used to generate spatial variables representing spatial patterns at different scales. We sampled 35 lakes from the Pantanal floodplain, Brazil. To understand the effects of environmental and spatial variables, we performed Redundancy Analyses and variation partitioning to separate environmental and spatial pattern effects. Environmental variables explained almost twice the variation in the Pantanal mussel assemblages than did spatial variables. Unionida species presence was driven mainly by variations in sediment coarse sand and silt contents. The weak spatial patterns observed may be related to increased connectivity between lakes during floods, which facilitates mussel host fish dispersal. Mussel abundances were driven mainly by organic matter availability, but varied between species. Changes in lake connectivity can affect the regional sediment dynamics and affect mussel assemblages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call