Abstract

Despite the remarkable efficiencies of perovskite solar cells, moisture instability has still been the major constraint in the technology deployment. Although, some research groups have discussed the possible mechanisms involved in the perovskite degradation, no broader understanding has been developed so far. Here, we demonstrate that the crystal orientation of perovskite film plays a major role in its degradation. We observed that the films fabricated via different routes led to different degradation behaviors and unraveled that diversity in the degradation rate arises due to the difference in crystallographic characteristics of the films. Using optical and electrical measurements, we show that the film prepared via a single-step (lead chlorideprecursorbased) route undergoes a much faster degradation rate as compared with films prepared using single step (acetateprecursorbased) and two-step (or sequential deposition) routes. Although the resulting film is methylammonium lead iodide (MAPbI3) regardless of processing via different routes, their respective crystal orientation is different. In this manuscript, we correlate crystal orientation of MAPbI3 with their degradation pattern. Our studies also suggest a possible way to make stable perovskite film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.