Abstract
N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P. haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings offer valuable insights for future investigations exploring the role of AHL producing epiphytes and biofilms in the life cycle of P. haitanensis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.