Abstract

The growing ubiquity of IoT-enabled devices in recent years emphasizes the critical need to strengthen transportation network safety and dependability. Intrusion detection systems (IDS) are crucial in preventing attacks on transport networks that rely on the Internet of Things (IoT). However, understanding the rationale behind deep learning-based IDS models may be challenging because they do not explain their findings. We offer an interpretable deep learning system that may be used to improve transportation network safety using IoT. To develop naturally accessible explanations for IDS projections, we integrate deep learning models with the Shapley Additive Reasons (SHAP) approach. By adding weight to distinct elements of the input data needed to develop the model, we increase the readability of so-called black box processes. We use the ToN_IoT dataset, which provides statistics on the volume of network traffic created by IoT-enabled transport systems, to assess the success of our strategy. We use a tool called CICFlowMeter to create network flows and collect data. The regularity of the flows, as well as their correlation with specific assaults, has been documented, allowing us to train and evaluate the IDS model. The experiment findings show that our explainable deep learning system is extremely accurate at detecting and categorising intrusions in IoT-enabled transportation networks. By examining data using the SHAP approach, cybersecurity specialists may learn more about the IDS's decision-making process. This enables the development of robust solutions, which improves the overall security of the Internet of Things. Aside from simplifying IDS predictions, the proposed technique provides useful recommendations for strengthening the resilience of IoT-enabled transportation systems against cyberattacks. The usefulness of IDS in defending mission critical IoT infrastructure has been questioned by security experts in the Internet of Vehicles (IoV) industry. The IoV is the primary research object in this case. Deep learning algorithms' versatility in processing many forms of data has contributed to their growing prominence in the field of anomaly detection in intrusion detection systems. Although machine learning models may be highly useful, they frequently yield false positives, and the path they follow to their conclusions is not always obvious to humans. Cybersecurity experts who want to evaluate the performance of a system or design more secure solutions need to understand the thinking process behind an IDS's results. The SHAP approach is employed in our proposed framework to give greater insight into the decisions made by IDSs that depend on deep learning. As a result, IoT network security is strengthened, and more cyber-resilient systems are developed. We demonstrate the effectiveness of our technique by comparing it to other credible methods and utilising the ToN_IoT dataset. Our framework has the best success rate when compared to other frameworks, as evidenced by testing results showing an F1 score of 98.83 percent and an accuracy of 99.15 percent. These findings demonstrate that the architecture successfully resists a variety of destructive assaults on IoT networks. By integrating deep learning and methodologies with an emphasis on explainability, our approach significantly enhances network security in IoT use scenarios. The ability to assess and grasp IDS options provides the path for cybersecurity experts to design and construct more secure IoT systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call