Abstract

2D perovskite solar cells with high stability and high efficiency have attracted significant attention. A systematical static and dynamic structure investigation is carried out to show the details of 2D morphology evolution. A dual additive approach is used, where the synergy between an alkali metal cation and a polar solvent leads to high-quality 2D perovskite films with sandwich-type structures and vertical phase segregation. Such novel structure can induce high-quality 2D slab growth and reduce internal and surface defects, resulting in a high device efficiency of 16.48% with enhanced continuous illumination stability and improved moisture (55-60%) and thermal (85°C) tolerances. Transient absorption spectra reveal the carrier migration from low n to high n species with different kinetics. An [PbI6 ]4- octagon coalescence transformation mechanism coupled with metal and organic cations wrapped is proposed. By solvent vapor annealing, a recrystallization and reorientation of the 2D perovskite slabs occurs to form an ideal structure with improved device performance and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.