Abstract

Coulombic forces are vital in modulating the electron transfer dynamics in both synthetic and biological polychromophoric assemblies, yet quantitative studies of the impact of such forces are rare, as it is difficult to disentangle electrostatic forces from simple electronic coupling. To address this problem, the impact of Coulombic interactions in the successive removal of two electrons from a model set of spirobifluorenes, where the interchromophoric electronic coupling is nonexistent, is quantitatively assessed. By systematically varying the separation of the bifluorene moieties using model compounds, ion pairing, and solvation, these interactions, with energies up to about 0.4 V, are absent at distances greater than about 9 Å. These findings can be (quantitatively) applied for the design of polychromophoric assemblies, whereby the redox properties of donors and/or acceptors can be tuned by judicious positioning of the charged groups to control the electron-transfer dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.