Abstract

AbstractDesigning electrocatalysts that excel in hydrogen and oxygen electrochemistry is crucial for sustainable hydrogen generation through electrochemical water splitting. This study presents a novel tricomponent catalyst composed of an alginate hydrogel (AL) infused with single‐walled carbon nanotubes (CNTs) and copper oxide (CuO) nanoparticles. The catalyst exhibits benchmark‐close bifunctional activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline conditions. The aerophobic nature of the AL‐gel facilitates superior bubble release from the electrode, while the inclusion of CNTs mitigates charge transfer resistance. Moreover, heterojunctions of CuO and CNTs create unique interfacial active sites, culminating in high electrocatalytic water‐splitting activity. The structural rigidity of the composite permits its use as self‐standing electrodes (SSE) without using substrates or binders, enabling a direct evaluation of its activity. The composite electrode demonstrates exceptional electrocatalytic HER activity in an alkaline solution, with onset potentials of 93 mV and moderate OER activity with an onset of 155 mV. Moreover, a water electrolysis cell featuring the bifunctional SSE exhibits an open circuit voltage of 1.85 V at 100 mA.cm−2, and only 8% efficiency loss after 100 h marking this a significant stride in developing self‐standing nonprecious electrocatalysts with impressive catalytic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.