Abstract

Metal contamination in agricultural soils has received widespread attention; however, the status of beryllium (Be) contamination in agricultural soils has been inadequately studied. This research was conducted to determine the enrichment level and major sources of Be contamination in the agricultural soil in Qingcheng District, Qingyuan City, and to quantify the potential ecological risk and human health risk (PER and HHR) of Be by integrating geological mineral and remote-sensing image maps. The results of principal component analysis followed by multiple linear regression (PCA–MLR) suggest that Be, Sn, Zn, Pb, As, and Cd are mainly derived from anthropogenic activities; V, Ti, Sc, Cr, and Co are mainly derived from medium acidic granites; Al and Si are mainly derived from geological sources; and K and Na are mainly derived from calcium-alkaline materials. Anthropogenic activities are priority material sources owing to the highest contribution. Be contamination poses a slight PER, and the PER level of agricultural soil was moderate. The HHR caused by Be is negligible. The results of this study can serve as the basis for promoting agricultural soil protection and developing and implementing agricultural policies to reduce environmental pollution in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call