Abstract

Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression. The "paradoxical" regulation of PP2Ac activity involving the CDK9/Src interplay contributes to ERK phosphorylation and pause-release of RNA polymerase II (Pol II). Co-targeting of CDK9 and KRAS/MAPK signaling pathways eliminates ERK-MYC activation and prevents feedback activation mediated by receptor tyrosine kinases, leading to more effective control of KRAS-mutant cancers and overcoming KRASi resistance. Moreover, modulating the tumor microenvironment (TME) by complement system intervention enhances the response to CDK9i and potently suppresses tumor growth. Overall, the preclinical investigations establish a robust framework for conducting clinical trials employing KRASi/SOS1i/MEKi or immunomodifiers in combination with CDK9i to simultaneously target cancer cells and their crosstalk with the TME, thereby yielding improved responses in KRAS-mutant patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.